Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 19(14)2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31295935

RESUMO

Metal oxide multi-nanowire-based chemical gas sensors were manufactured by a fast and simple transfer printing technology. A two-step method employing spray pyrolysis deposition and a thermal annealing process was used for SnO 2 nanowires fabrication. A polydimethylsiloxane stamp was used to transfer the SnO 2 nanowires on two different gas sensing devices-Si-based substrates and microhotplate-based platform chips. Both contained a metallic inter-digital electrode structure (IDES), on which the SnO 2 nanowires were transferred for realization of multi-NW gas sensor devices. The gas sensor devices show a very high response towards H 2 S down to the 10 ppb range. Furthermore, a good response towards CO has been achieved, where in particular the microhotplate-based devices exhibit almost no cross sensitivity to humidity.

2.
ACS Nano ; 13(2): 2389-2397, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30706709

RESUMO

Colloidal nanocrystals from PbS are successfully applied in highly sensitive infrared photodetectors with various device architectures. Here, we demonstrate all-printed devices with high detectivity (∼1012 cm Hz1/2/W) and a cut-off frequency of >3 kHz. The low material consumption (<0.3 mg per detector) and short processing time (14 s per detector) enabled by the automated printing promises extremely low device costs. To enable all-printed devices, an ink formulation was developed based on nanocrystals stabilized by perovskite-like methylammonium iodobismuthate ligands, which are dispersed in a ternary solvent. Fully inkjet printed devices based on this solvent were achieved with printed silver electrodes and a ZnO interlayer. Considerable improvements were obtained by the addition of small amounts of the polymer poly(vinylpyrrolidone) to the ink. The polymer improved the colloidal stability of the ink and its film-formation properties and thus enabled the scalable printing of single detectors and detector arrays. While photoconductors were shown here, the developed ink will certainly find application in a series of further electronic devices based on nanocrystals from a broad range of materials.

3.
Sensors (Basel) ; 19(3)2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30736393

RESUMO

Metal oxide gas sensors generally need to be operated at elevated temperatures, up to and above 400 °C. Following the need for miniaturization of gas sensors and implementation into smart devices such as smartphones or wireless sensor nodes, recently complementary metal-oxide-semiconductor (CMOS) process-based micro electromechanical system (MEMS) platforms (micro-hotplates, µhps) have been developed to provide Joule heating of metal oxide sensing structures on the microscale. Heating precision and possible spatial temperature distributions over the µhp are key issues potentially affecting the performance of the overall gas sensor device. In this work, we use Raman spectroscopy to directly (in-situ and in-operando) measure the temperature of CMOS-based µhps during the application of electric current for Joule heating. By monitoring the position of the Raman mode of silicon and applying the theoretical framework of anharmonic phonon softening, we demonstrate that state-of-the-art µhps are able to reach the set temperature with an error below 10%, albeit with significant spatial temperature variations on the hotplate. This work demonstrates the potential of Raman spectroscopy for in-situ and in-operando temperature measurements on Si-based devices, an aspect of high relevance for micro- and nano-electronic device producers, opening new possibilities in process and device control.

4.
Sci Rep ; 9(1): 807, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30692601

RESUMO

Cupric oxide (CuO) nanowires were produced by thermal oxidation of copper surfaces at temperatures up to 450 °C. Three different surfaces, namely a copper foil as well as evaporation deposited copper and an application relevant sputtered copper film on Si(100) substrates were characterized ex-situ before and after the experiment. The development of oxide layers and nanowires were monitored in-situ using grazing incidence small angle X-ray scattering. The number density of nanowires is highest for the sputtered surface and lowest for the surface prepared by evaporation deposition. This can be linked to different oxide grain sizes and copper grain boundary diffusions on the different surfaces. Small grains of the copper substrate and high surface roughness thereby lead to promoted growth of the nanowires.

5.
Nanoscale ; 9(22): 7380-7384, 2017 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-28387407

RESUMO

In situ transmission electron microscopy provides exciting opportunities to address fundamental questions and technological aspects related to functional nanomaterials, including the structure-property relationships of miniaturized electronic devices. Herein, we report the in situ chemoresistive sensing in the environmental transmission electron microscope (TEM) with a single SnO2 nanowire device, studying the impact of surface functionalization with heterogeneous nanocatalysts. By detecting toxic carbon monoxide (CO) gas at ppm-level concentrations inside the microscope column, the sensing properties of a single SnO2 nanowire were characterized before and after decoration with hybrid Fe-Pd nanocubes. The structural changes of the supported nanoparticles induced by sensor operation were revealed, enabling direct correlation with CO sensing properties. Our novel approach is applicable for a broad range of functional nanomaterials and paves the way for future studies on the relationship between chemoresistive properties and nanoscale morphology.

6.
Nanotechnology ; 26(17): 175502, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25854640

RESUMO

We report on conductometric gas sensors based on single CuO nanowires and compare the carbon monoxide (CO) sensing properties of pristine as well as Pd nanoparticle decorated devices in humid atmosphere. Magnetron sputter inert gas aggregation combined with a quadrupole mass filter for cluster size selection was used for single-step Pd nanoparticle deposition in the soft landing regime. Uniformly dispersed, crystalline Pd nanoparticles with size-selected diameters around 5 nm were deposited on single CuO nanowire devices in a four point configuration. During gas sensing experiments in humid synthetic air, significantly enhanced CO response for CuO nanowires decorated with Pd nanoparticles was observed, which validates that magnetron sputter gas aggregation is very well suited for the realization of nanoparticle-functionalized sensors with improved performance.

7.
Nanotechnology ; 24(31): 315501, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-23851634

RESUMO

In this work, we present calculated numerical values for the kinetic parameters governing adsorption/desorption processes of carbon monoxide at tin dioxide single-nanowire gas sensors. The response of such sensors to pulses of 50 ppm carbon monoxide in nitrogen is investigated at different temperatures to extract the desired information. A rate-equation approach is used to model the reaction kinetics, which results in the problem of determining coefficients in a coupled system of nonlinear ordinary differential equations. The numerical values are computed by inverse-modeling techniques and are then used to simulate the sensor response. With our model, the dynamic response of the sensor due to the gas-surface interaction can be studied in order to find the optimal setup for detection, which is an important step towards selectivity of these devices. We additionally investigate the noise in the current through the nanowire and its changes due to the presence of carbon monoxide in the sensor environment. Here, we propose the use of a wavelet transform to decompose the signal and analyze the noise in the experimental data. This method indicates that some fluctuations are specific for the gas species investigated here.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...